
SQLi süstimine ASP.NET, ADO.NET ja MS SQL
serveris
15 years ago- 14.04.2010 By AM

(Arvutimaailm 4/10, veebis on autori täispikk versioon, lõpus lisandina RTF
dokument originaalkujundusega)

? MS SQL Server on paljude veebirakenduste andmebaasimootor ja tänu oma
rikkalikele programmeerimisvõimalustele väga sobilik SQLi süstimiseks. Kuidas
sellest hoiduda?

! Järjest uuemates SQL Serveri versioonides on küll kasutusel järjest paremad
tehnikad süstimise vältimiseks, kuid parim tõrje on ikkagi programmeerija hea
töö.

SQLi süstimine, tuntud ka kui SQL INJECTION, on CWE/SANS 2010. aasta aruande (
http://cwe.mitre.org/top25/) kohaselt küberkuritegevuses kasutatavatest
tehnikatest teisel kohal.

MS SQL Server on paljude veebirakenduste andmebaasimootor ja tänu oma
rikkalikele programmeerimisvõimalustele väga sobilik SQLi süstimiseks. Järjest
uuemates SQL Serveri versioonides on küll kasutusel järjest paremad tehnikad
süstimise vältimiseks (TEXTCOPY utiliidi keelamine, DDL päästikprotsessid,
operatsioonisüsteemi poole pöörduvate süsteemsete protseduuride
aktiveerimiseks tuleb ligipääs eraldi lubada jne.), kuid parim tõrje on ikkagi
programmeerija poolt õieti ja teadlikult süstimist vältivate lausekonstruktsioonide
koostamine.

SQL süstimine ise toimub nõnda, et teadlikult valitud sisendparameetrite
koostamisega saab muuta algset, programmeerija poolt loodud baasipäringu
loogika mõtet. Näiteks alljärgnev andmebaasi päring ASP.NET-is, kus tuleb
sisestada kasutaja ID, ja kui selline kasutaja baasist leitakse, siis tehakse midagi,
vastasel juhul väljastatakse veateade:

SqlCommand komm = new SqlCommand(@"SELECT TOP 1 name FROM dbo.users
WHERE [ID] =" + this.TextBoxUserId.Text.Trim());
Object o = komm.ExecuteScalar();
if (o.Equals(DBNull.Value))
 {
 throw new InvalidOperationException("Vale kasutaja");
 }

https://www.am.ee/en/SQL
https://www.am.ee/en/SQL
https://www.am.ee/en/user/1
http://www.am.ee/node/1230
http://cwe.mitre.org/top25/

 else
 {
 // tee midagi
 }

Kui tabeli USERS väli ID on INT tüüpi ja sisestuskasti sisestatakse number 3, siis
baasipäring, mida täitma asutakse, on

SELECT TOP 1 name FROM dbo.users WHERE ID = 3

ehk päringu loogika langeb kokku sellega, mida arendaja mõtles.

Süstija muudab aga baasipäringu loogikat, valides uued sisendaparameetrid,
ütleme 3 OR 1=1. Seega saadetakse andmebaasimootorile täitmiseks päring

SELECT TOP 1 name FROM dbo.users WHERE ID = 3 OR 1=1

Ehk siis algselt mõeldud ostingutingimuse loogika ID = 3 laieneb hoopis kujule ID
= 3 OR 1=1, mis tähendab, et kui tabelis leidub mistahes kirjeid, siis üks kirje
väljastatakse alati tänu muudetud loogikatingimusele OR 1=1, ehk 1=1 on alati
tõene.

Andmete väljatõmbamiseks kasutatakse SQLi süstimises erinevaid
läbistustestimisvahendeid, mille abil võrreldakse erinevust serverile normaalse
parameetri ja muudetud parameetriga esitatud päringu vastustes.

Lihtne testmeetod selle erisuse väljatoomiseks on võrrelda näiteks baasipäringute

SELECT TOP 1 name FROM dbo.users WHERE ID = 3

ja

SELECT TOP 1 name FROM dbo.users WHERE ID = 3-1

esitamise teel erinevusi serveri poolt saadetud vastustes.

Baasipäringule etteantavat parameetrit saab kohandada näiteks sirvikul URL
parameetrit muutes ning seejärel visuaalselt väljundi erinevust võrreldes:

Muuta saab ka HiddenField tüüpi muutujate sisu või SOAP päringute
parameetreid.

Andmebaaside puistamise võtteid

-Tehete järjekorra alusel:

SELECT TOP 1 name FROM dbo.users WHERE ID = 3 - CASEWHEN
SUBSTRING(@@SERVERNAME,1,1) = CHAR(65) THEN 1 ELSE 0 END

Võrdustehe tehakse viimasena.

Kräkker kasutab siin meetodit, kus võrreldakse parameetri muutmise teel
muutuvat väljundit, CHAR(65), CHAR(66), CHAR(67) jne ehk kui serveri nime
esimene täht langeb kokku CHAR funktsiooni poolt tagastatava sümboliga, peab
väljund muutuma. Selle meetodiga otsitakse kindlaksmääratud stringi serveri
vastuses.

- Veateadetel põhinevad

SELECT TOP 1 name FROM dbo.users WHERE ID = 3 / CASEWHEN
SUBSTRING(@@SERVERNAME,1,1) = CHAR(65) THEN 0 ELSE 1 END

Kui serveri nime esitäht langeb kokku CHAR funkstoooni poolt tagastatava
sümboliga, on tulemuseks nulliga jagamine ehk SQLSERVER annab veateate
Divide by zero encoutered. Kui see tekst leitakse tagastatavas väljundis, on
serveri nime esitäht teada.

Näiteks, kui ASP.NET kood on kirjutatud järgmise konstruktsioonina

try

{

 using(...)

 {

 //andmebaasi poole pöördumine

 ...

 }

}

catch(SystemException ex)

{

 this.CustomValidator1.ErrorMessage = ex.Message;

 this.CustomValidator1.IsValid = false;

}

Siis sirviku pilt paistab niimoodi, ehk serveri nime esitäht on CHAR(86)

- Otsene veateate tekitamine

SELECT TOP 1 name FROM dbo.users WHERE ID = 3/@@SERVERNAME

Antud juhul tekib tüübierinevus jagataval ja jagajal, veateade aga, mis serverist
seepeale tuleb: Conversion failed when converting the nvarchar value
'SINUSERVERINIMI' to data type int,annab kräkkerile vajaliku info.

- Kahendotsingut võimaldavad

SELECT TOP 1 name FROM dbo.users WHERE ID = 3 AND
ASCII(SUBSTRING(@@SERVERNAME,1,1)) < 76

ASCII('L')on number 76, 'A'-'Z' on numbrid 65 – 90, binaarotsingut kasutades ei
pea järjestikku ükshaaval väärtusi kontrollima, vaid saab need palju vähema
katsete arvuga kätte.

- Stringi lõpetamine ja väljakommenteerimine

Ülakoma ’ on SQL-is stringi lõpetaja ja -– rea kommentaar, kõik mis on peale -–
loetakse kommentaariks ja andmebaasi mootori poolt täitmisele ei võeta. See
meetod on eriti ablas string tüüpi muutujatele.

Näiteks on andmebaasis vaja sooritada päring:

SELECT ID FROM dbo.users WHERE NAME = 'NIMI'

ASP.NET koodis konstrueeritakse vajalik avaldis nii:

stringnimi=this.TextBoxUserName.Text.Trim(); SqlCommandkomm = new
SqlCommand(@"SELECT ID FROM dbo.users WHERE NAME ='"+ nimi +"'");

Sobivalt valitud sisendiga NIMI' OR 1=1 -- saab aga muuta SQL lause loogikat:

SELECT ID FROM dbo.users WHERE NAME ='NIMI'OR 1=1 --'

Kuna 1=1 on alati tõene ja kasutatakse OR tehet, mis on tõene kui üks operand
on tõene, siis päringu tulemusena saadakse baasist tunduvalt rohkem andmeid
kui algselt ette nähtud.

- Pakettpäringud, semikooloniga ründeavaldis

SELECT TOP 1 name FROM dbo.users WHERE ID = 3;SELECTCASE WHEN
SUBSTRING(@@SERVERNAME,1,1) = CHAR(65) THEN 1/0 ELSE 0 END

Semikoolon ; on MSSQL lause lõpu märgend. Kõik mis peale ; tuleb, loetakse
eraldi SQL lauseks ehk tegu on kahe erineva SQL lausega:

SELECT TOP 1 name FROM dbo.users WHERE ID = 3

ja

SELECTCASE WHEN SUBSTRING(@@SERVERNAME,1,1) = CHAR(65) THEN 1/0 ELSE
0 END

Uus sisendparameetri SQL lausekonstruktsioon lisab algsele SQL lause loogikale
veateate tekitamise osa analoogselt ülalkirjeldatuga.

- Ajalise viivituse kasutamine pakettpäringuga (Blind Injection).

Kui serveri vastusest veateadet välja ei loe ja ka tagastatav väljund ei muutu,
saab kräkker kasutada ajalist viivitust ehk võrrelda serverile esitatud päringu ja
saabuva vastuse ajavahemikku.

SELECT TOP 1 name FROM dbo.users WHERE ID = 3;
IFSUBSTRING(@@SERVERNAME,1,1) = CHAR(65) WAITFOR DELAY
'00:00:04'

Mis masinkeelest tõlgituna tähendab: kui serveri nime esitäht on CHAR(65) ehk A,
oota 4 sekundit. Ründaja poolt mõõdetakse, kas tekib ajalist erinevust serverist
saabuvates vastustes.

- UNION ründeavaldis

Tõmbab andmebaasist välja rohkem kui algselt mõeldud. Näiteks algne avaldis:

SELECTdropdowntekst FROM aspdrop WHERE ID=2

Kräkkeri poolt modifitseerituna

SELECTdropdowntekst FROM aspdrop WHERE ID=2 UNIONALL SELECT
@@SERVERNAME

Lisaks algselt mõeldud andmetele saadakse selle päringuga veel ka serveri nimi.
See meetod võimaldab korraga ja kiiresti palju andmeid kätte saada. Sellega
suudab kräkker ka andmebaasi väljundi enda kasuks keerata, näiteks seda
järjestades:

SELECTdropdowntekst FROM aspdrop WHERE ID=2 UNIONALL SELECT
@@SERVERNAME ORDER BY 1 DESC

SQL süstimise omapära võrreldes teise meetoditega on see, et pole vaja
täiendavaid komponente („troojalast“, „käomuna“ jne.) Kogu vajalik tehniline
arsenal on SQL Server-is endas olemas. SQL Server aga ise on suure jõudlusega
arvuti.

Vältimine

SQL süstimise vältimiseks on hea, kui saadakse aru, kuidas MS SQL Server töötleb
temale esitatud päringuid. Seda saab vaadata SQL Profileri nimelise utiliidiga.

SQL süstimise jälgimiseks tuleb Event-idest valida SQL:BatchStarting,
SQL:StmtStarting, SQL:StmtCompleted, SQL:BatchCompleted

SQL lause

SELECTTOP 1 name FROM dbo.users WHERE ID = 3 AND
ASCII(SUBSTRING(@@SERVERNAME,1,1)) < 76

töötamine näeb Profileris välja nii

Pakettpäringu täitmine

SELECT TOP 1 name FROM dbo.users WHERE ID = 3;SELECT CASE WHEN
SUBSTRING(@@SERVERNAME,1,1) = CHAR(65) THEN 1/0 ELSE 0 END

https://www.am.ee/files/image/SQL3.jpg

Semikoolon on SQL Serveris lause lõpetaja ja seetõttu täidetakse SQL Serveris
kahte eraldi lauset.

Mida saab programmeerija teha?

SQL süstimist saab parametriseeritud päringute korral vältida tüübiteisendustega.

Kirjutame ASP.NET-is andmebaasi poole pöördumise ümber parametriseeritud
päringuna.

SqlCommandkomm = new SqlCommand(@"SELECT TOP 1 name FROM
dbo.users

WHERE [ID] = @id");

komm.Parameters.AddWithValue("@id",
Convert.ToInt32(this.TextBoxUserId.Text.Trim()));

Objecto = komm.ExecuteScalar();

Kui nüüd seda lauset täita erinevate SQL süstimise sisenditega

3 - CASEWHEN SUBSTRING(@@SERVERNAME,1,1) = CHAR(65) THEN 1 ELSE
0 END

3 ANDASCII(SUBSTRING(@@SERVERNAME,1,1)) < 76

3;SELECTCASE WHEN SUBSTRING(@@SERVERNAME,1,1) = CHAR(65) THEN
1/0 ELSE 0 END

3/@@SERVERNAME

jõuab programm koodi täitmisel kohani

komm.Parameters.AddWithValue("@id",
Convert.ToInt32(this.TextBoxUserId.Text.Trim()));

kus sisendit hakatakse pöörama Convert.ToInt32(this.TextBoxUserId.Text.Trim())
int andmetüübiks, tulemuseks ASP.NET veateade Input string was not in a correct
formatehk SQL Serverini lause täitmine ei jõuagi.

Parametriseeritud päringu parameetri saab kirjeldada ka nii:

komm.Parameters.Add("@id", System.Data.SqlDbType.Int);

komm.Parameters["@id"].Value = this.TextBoxUserId.Text.Trim();

Veateade, mis tuleb Failed to convert parameter value from a String to a Int32.
on erinev, aga see saadakse seekord juba ADO.NET-ist.

Kuna oodatakse INT tüüpi parameetrit, siis tüübiteisendus kaitseb SQL süstimise
vastu.

Sama tüübipööramise kaitset saab ju tegelikult kasutada ka ilma
parametriseeritud päringute kasutamisega, kirjutades SQL lause alljärgnevalt:

SqlCommandkomm = new SqlCommand(@"SELECT TOP 1 name FROM
dbo.users

WHERE [ID] ="+
Convert.ToInt32(this.TextBoxUserId.Text.Trim()).ToString());

Põhimõtteline vahe on selles, kuidas SQL Server parametriseeritud päringut
käivitab. Seda saab jälle täpselt järele vaadata SQL Profileriga.

Parametriseeritud päringu puhul näeb SQL lause täitmine SQL Profileris välja nii:

SQL lause käivitamiseks kasutatakse käivitusplaani tegevat protseduuri
sp_executesql, mis jätab täidetud lause ka SQL Serveri Execution Plan Cache-sse
taaskasutamiseks. SQL lause ise jääb muutmatuks, ainult parameeteri väärtused
muutuvad, kui sama lauset uuesti kasutada.

Sellele, mida parameerisse @id sisse antakse, ülejäänud SQL lausel „ligipääsu“ ei
ole, ehk see, mis parameetrisse kirjutatakse, sinna ka sisse jääb.

Kui ülaltoodud näites parameeter määrata niimoodi

komm.Parameters.Add("@id", System.Data.SqlDbType.Int);

komm.Parameters["@id"].Value = this.TextBoxUserId.Text.Trim();

siis SQL Serverisse päringu saatmiseks üritab ADO.NET kräkkeri poolt antud
sisendaparameetrit 3-1 pöörata tüüpi Int32, mis aga ei õnnestu ja tulemuseks
saab ta tüübipööramisel veateate Failed to convert parameter value from a String
to a Int32.

SQL süstimise vältimine parametriseeritud päringutega.

Kui parameetriks on string tüüpi muutuja, siis tüübiteisendusest abi pole.

SqlCommandkomm = new SqlCommand(@"SELECT ID FROM dbo.users

WHERE NAME = @nimi");

Aga nagu öeldud, parametriseeritud päringu korral SQL lausele parameetrile
ligipääsu pole

komm.Parameters.AddWithValue("@nimi",
this.TextBoxUserName.Text.Trim());

ehk kui üritada eespoolt toodud kräkkimist sisendiga SIIA' OR 1=1 -- siis SQL
Profiler näitab lause täitmist niimoodi.

Ehk sisendit SIIA' OR 1=1 -– käsitletaksegi nii nagu ta on ehk sellist stringi
andmebaasist otsitaksegi ja SQL süstimise rünnak ei õnnestu.

Stringi tüübipööramine ja parameetri arvamine

Mida parametriseeritud päringute ja tüübipööramiste puhul tuleb tähele panna on
see, kuidas ASP.NET ja SQL Server stringi käsitlevad.

ASP.NET-is on stringid Unicode formaadis, millele SQL Serveris vastab NVARCHAR
andmetüüp. Kui nüüd näiteks andmebaasi väli IDCODE on VARCHAR tüüpi ja
saata sooritamiseks järgmine päring

SqlCommandkomm = new SqlCommand(@"SELECT ID FROM dbo.users

WHERE IDCODE = @inimi");

komm.Parameters.AddWithValue("@inimi",
this.TextBoxUserIdCode.Text.Trim());

ja TextBoxUserIdCode sisestada 3, näitab SQL profiler järgmist pilti

Kui aga TextBoxUserIdCode sisestada 345, näitab SQL profiler järgmist pilti

Pahasti on siin see, et andmebaasi tabeli väli on tüüpi VARCHAR, aga parameetri
tüüp on NVARCHAR ehk SQL Server hakkab tegema tüübiteisendust, mis võtab
indeksi kasutamise ja koos sellega ka päringu kiiruse maha. Samas SQL Server ei
tea, kui pikk string sisse antakse. Kui antakse 3, siis muutuja tüübiks tuleb
NVARCHAR(1), kui aga sisendiks 345, siis muutuja tüübiks NVARCHAR(3) ehk tegu
on SQL Serveri jaoks kahe erineva andmetüübiga. Sellest tulenevalt rakenduvad
ka erinevad käivitusplaanid.

Käivitusplaanide puhvri sisu saab vaadata päringuga

SELECTusecounts, cacheobjtype, objtype, text

FROMsys.dm_exec_cached_plans CROSS APPLY
sys.dm_exec_sql_text(plan_handle)

WHEREusecounts > 1

Probleemi saab vältida parameetri tüübi määramisega, ehk kasutame
konstruktsiooni

komm.Parameters.Add("@inimi",SqlDbType.VarChar,15);

komm.Parameters["@inimi"].Value = this.TextBoxUserIdCode.Text.Trim();

Nüüd pole enam vahet, kas sisestada 3 või 345, SQL Profileris paistab pilt
mõlemal puhul ühtemoodi.

ADO.NET eeldab muidu ise, et kõik parameetrid, millel pole tüüpi otseselt
määratud, on Unicode formaadis ehk SQL Server-ini jõuab andmetüüp
NVARCHAR. Ehk parameetrit ilma tüübita kirjeldades

komm.Parameters.AddWithValue("@id", this.TextBoxUserId.Text.Trim());

näeb käivitusplaan välja järgmine:

Kui nüüd parameetriks sisestada 3-1, üritab sp_executesql täita lauset

SQL süstimise hoiab ära tüübipööramine SQL Server-is ja tulemuseks saame
veateate

Conversion failed when converting the nvarchar value '3-1' to data type int.

Paha on see, et see veateade tuleb juba SQL Serverist, ehk kräkker on läbistanud
mitu andmevahetuskihti.

Numbrite puhul eeldab SQL Server vaikimisi tüübiks INT, kuid ADO.NET on ise
õnneks vägagi andekas:

komm.Parameters.AddWithValue("@id",
Convert.ToInt16(Request.QueryString["id"].ToString()));

täidetaksegi kui SMALLINT, ehk Convert.ToInt16 vastab SQL Serveris SMALLINT
andmetüüp ning andmebaasimootori pooolt läheb täitmisele järgnev
parametriseeritud päring:

exec sp_executesql N'SELECT TOP 1 [name] FROM [dbo].[users] WHERE [ID]
= @id',N'@id smallint',@id=2

User Defined Functions väljakutsumine

MS SQL ServerI-sse tehtud kasutajafunktsioonid on süstitavad sisendi kräkkimisel
pakettpäringuks. Kirjutame SQL lause üle funktsiooniks

CREATEFUNCTION [dbo].[ID_NIMI](@nimi NVARCHAR(50))

RETURNSINT

AS

BEGIN

DECLARE@ret INT

SET@ret=(SELECT ID FROM dbo.users WHERE NAME = @nimi)

RETURN@ret

END

Koostame ASP.NET funktsiooni poole pöördumise

komm = new SqlCommand(@"SELECT [dbo].[ID_NIMI] ('" +
this.TextBoxSisu.Text.Trim() + "')");

Antud pöördumine andmebaasi on süstitav pakettpäringuna koostatud sisendiga:

NIMI'); DELETE FROM [dbo].[users]--

Andmebaasis täidetakse kahte SQL lauset, semikooloniga eraldatakse esimene

SELECT [dbo].[ID_NIMI] ('NIMI');

ja teise lause jaoks kommenteeritakse välja algse lause lõpp

DELETE FROM [dbo].[users] --')

Vältida saab seda parameetritega funktsiooni väljakutsumisel

SqlCommandkomm = new SqlCommand(@"SELECT
[dbo].[ID_NIMI](@nimi)");

komm.Parameters.AddWithValue("@nimi", this.TextBoxSisu.Text.Trim());

SQL Profileris pilt selline:

Remote Procedure Call käsitleb kõike parameetrisse sisseantud nii nagu see on ja
kräkkeri sisend SQL lauset ennast muutma ei ulata.

Salvestatud protseduuride kasutamine

Alates SQL2005 Service Pack 2-st oskab MS SQL Server string tüüpi parameetreid
automaatselt lühemaks lõigata. Näiteks sisendaparemeetri @nimi pikkuseks on
NVARCHAR(50) ja kui peaks sisestatama üle 50 märgi, siis lõpp lõigatakse
salvestatud protseduuri väljakutsumisel maha. Siit ka hea põhjus salvestatud
protseduuride kasutamiseks - kräkkeril muutub sobiva ründeavaldise koostamine
raskemaks. Ülaltoodud näidetes toodud SQL väljakutsumise saab salvestatud
protseduuris teha kolmel erineval viisil, mis kõik annavad sama tulemuse.

ALTERPROCEDURE [dbo].[ID_NIMI_S] @nimi NVARCHAR(50)

AS

BEGIN

SETNOCOUNT ON

DECLARE@sql NVARCHAR(MAX)

SELECTID FROM dbo.users WHERE NAME = @nimi

SET@sql='SELECT ID FROM dbo.users WHERE NAME = @nimi'

EXECUTEsp_executesql@stmt=@sql, @params=N'@nimi NVARCHAR(50)',
@nimi=@nimi

SET@sql='SELECT ID FROM dbo.users WHERE NAME = '''+@nimi+''''

EXECUTE(@sql)

END

SQL Profiler näitab lausete täitmist niimoodi:

SELECTID FROM dbo.users WHERE NAME = @nimi täidetakse niimoodi

SET@sql='SELECT ID FROM dbo.users WHERE NAME = @nimi'

EXECUTEsp_executesql@stmt=@sql, @params=N'@nimi NVARCHAR(50)',
@nimi=@nimi

täidetakse niimoodi

ja

SET@sql='SELECT ID FROM dbo.users WHERE NAME = '''+@nimi+''''

EXECUTE(@sql)

täidetakse niimoodi

Salvestatud protseduuride kasutamine iseenesest ei taga kaitset SQL süstimise
vastu. Oluline on ka teada, kuidas SQL lause salvestatud protseduuris koostatakse
ja käivitatakse

Käivitades EXECUTE(@sql) täidetakse seda kui SQL AdHoc päringut, mis on
vastuvõtlik SQL süstmisele. Sobivalt valitud sisendiga

NIMI'; DELETE FROM [dbo].[users] --

saab baasipäringu rekonstruktreerida pakettpäringuks

Ehk täidetakse juba kahte eraldi SQL lauset nii nagu kräkker seda tahab.

Dünaamilise SQL-i kasutamine

Mõnel juhul ei saa kasuta parametriseeritud päringud (Prepared statement),
näiteks kui on vaja kooostada muutuvate veergude arvuga päring. Sel juhul tuleb
SQL lause omavahel osadest kokku liita ja see on olemuselt vastuvõtlik SQL
süstimisele.

Tõrjeks annab alati kasutada tüübipööramist, kas .NET koodis või SQL Serveris
endas.

Number pööratakse integeriks ja tagasi stringiks, juhul kui sisend on
modifitseeritud, saab veateate.

.NET-is

Convert.ToInt32(this.TextBoxUserId.Text.Trim()).ToString())

SQL-is

DECLARE@sql NVARCHAR(MAX)

SET@sql='SELECT TOP 1 name FROM dbo.users WHERE ID =
'+CAST(CAST(@nimi AS INT) AS NVARCHAR(50))

Stringi polsterdamine

Dünaamilise SQL lause saab SQL Serveris ohutult kokku panna polsterdamisega

SELECT'' -- saame tühja stringi

SELECT'''' --saame ülakoma ehk lõpetame või alustame stringi

SELECT'''''' --saame kaks ülakoma mis annavad ülakoma sümboli mis aga ei
lõpeta ega alusta stringi

Koostame SQL lause, polsterdades stringi tüüpi muutujat @nimi

SET@sql='SELECT ID FROM dbo.users WHERE NAME =
'''+REPLACE(@nimi,'''','''''')+''''

EXECUTE(@sql)

Protseduuri sisseantavas muutujas @nimi polsterdame ühekordse ülakoma
kahekordseks, ehk ei luba kräkkeri poolt stringi lõpetamist.

SQL truncation

Polsterdamise kõrvalnäht on see, et REPLACE(@nimi,'''','''''') teeb ühest ülakomast
kaks, ehk ruumi SQL lause enda stringi mahust võetakse topelt. Kui @sql muutuja
võtta pikkusega DECLARE @sql NVARCHAR(60)

ja kui SQL lauset koostatada nii, et parameetrid on @nimi NVARCHAR(20) ja@id
INT, väärtusteks vastavalt 'Aia' ja 3

SET@sql='UPDATE dbo.users SET NAME = '''+REPLACE(@nimi,'''','''''')+'''
WHERE ID = '+CAST(@id AS NVARCHAR(10))

EXECUTE(@sql)

Kräkker aga duubeldab osavalt muutuja @nimi sisu, ehk REPLACE lause teeb
ühest ülakomast kaks, kui kräkkeri sisend on näiteks

'''''''''''''''''''''''''''Aia'

siis tulemus pole päris see, mis mõeldi, WHERE osa on lausest kadunud.

Odav variant SQL TRUNCATION rünnaku tõrjumiseks on SQL lause muutuja
defineerida 2GB mahuga, ehk DECLARE @sql NVARCHAR(MAX). Ära ei maksaks
põlata ka LEFT() funktsiooni, mis võtab parameetrist ainult kindlaksmääratud
pikkusega osa. Koodi tasemel SQL süstimise tõrjeks võib kasutada ka näiteks SQL
kommentaari väljalõikamist REPLACE(@nimi,'--',''), aga riske, mida taoline
väljalõikamine endaga kõrvalnähuna kaasa võib tuua, tuleb eelnevalt hinnata.
Alati tuleb kasutada igasuguse sisendi kontrollimist ja parameetrite
tüübiteisendust. Alati tuleb rakendada igasuguse sisendi ja parameetrite tüübi
kontrollimist.

SqlDataSource

SqlDataSource jälgib parametriseeritud päringute mõtet, eelnevalt tehtud User
Defined Functioni kasutamine SqlDataSource-na ja

<asp:SqlDataSourceID="SqlDataSource1" runat="server"

 DataSourceMode="DataReader"

 SelectCommand="SELECT dbo.ID_NIMI(@nimi) AS Expr1">

 <SelectParameters>

 <asp:Parameter Name="nimi" />

 </SelectParameters>

</asp:SqlDataSource>

käivitamine näeb SQL Profileris välja parametriseeritud päringu kasutamisena

kuid SQL Server üritab taas parameetri tüüpi ära arvata. Määrates otseselt
parameetri andmetüübi

<asp:ParameterName="nimi" DbType="String" Size="50" />

saame aga SQL Server-i sõbralikuma lähenemise.

LINQ to SQL

Olemuselt tugev tüübiteisendus

 [Column(Storage="_name", DbType="NVarChar(50) NOT NULL",
CanBeNull=false)]

publicstring name

{

 get

{

 return this._name;

 }

 set

 {

 if ((this._name != value))

 {

 this.OnnameChanging(value);

 this.SendPropertyChanging();

 this._name = value;

 this.SendPropertyChanged("name");

 this.OnnameChanged();

 }

 }

}

Koostame Ling to SQL baasipäringu ja käivitame selle.

varquery = from kasutaja in tabelid.users

 where kasutaja.name == this.TextBoxSisu.Text.Trim()

 select kasutaja.id;

List<int> nimed = query.ToList();

if(nimed.Count > 0)

{

 this.TextBoxSisu.Text = nimed[0].ToString();

}

Linq to SQL kasutab parametriseeritud päringut, kuid tegeleb ka parameetri
arvamisega.

Erinevate string tüüpi parameetri väärtuste korral saame erinevad
käivitusplaanid, kuid SQL süstimine on välditud.

Kokkuvõte

Täiuslikke süsteeme pole olemas, kuid igale ohule saab leida vasturohu.
Kübersõdade võitmiseks tuleb kaitsmine odavaks ja ründamine kalliks teha.

Arendagem tarkvara teadlikult.

Kuido Külm
tarkvaraarendaja

Lahendused

Tarkvara
Turvalisus

https://www.am.ee/lahendused
https://www.am.ee/taxonomy/term/15
https://www.am.ee/turvalisus

