
Sissejuhatus semantilisse veebi, 4: Reaalne
süsteemi loomine ontoloogiate abil
20 years ago- 22.04.2005 By AM

(Arvutimaailm 4/05)

Autor: Mario Peterson

Seekord räägin ontoloogiate kasutamisest ka reaalse süsteemi loomisel. Ühtlasi
on see viimane ja kokkuvõtlik artikkel semnatilise veebi kohta.

Loodava süsteemi kirjeldus

Probleemi püstitus

Vaatleme situatsiooni, mille kontekstis me süsteemi loome. Oletame, et:

• meil on palju riistvara müüvaid firmasid (Riistvara kaupmeees1 ..n);

• igal kaupmehel on koduleht;

• iga firma avaldab HTML-kujul oma toodete hinnad;

• kõik kaupmehed müüvad samaväärseid kaupu, kuid erineva hinnaga;

• kaupmeeste arv (n) on suur.

Antud olukorras on väga raske saada ülevaadet müüdavatest kaupadest. See
protsess on väga aeganõudev. Samuti ei ole võimalik luua sellise mudeli puhul
tarkvaralist agenti, mis hinnakirjad automaatselt läbi käiks ja mingi kokkuvõtte
teeks. Seega on paratamatu, et kaupmehed peavad oma hinnakirju avaldama ka
mingil muul kujul, kui HTML-is.

Defineerime nõuded, millele loodav süsteem peaks vastama.

• Platvormi sõltumatus: pakutav lahendus ei tohiks sõltuda kaupmehe ega agendi
poolt kasutatavast operatsioonisüsteemist ega rakendustest.

• Universaalsus: kaupmehe poolt pakutav hinnakiri peab olema arusaadav
kõikidele agentidele.

https://www.am.ee/en/node/196
https://www.am.ee/en/node/196
https://www.am.ee/en/user/1
http://www.am.ee/node/125

• Laiendatavus: hinnakirja struktuur peab olema vabalt muudetav ilma, et
häiritaks vana struktuuriga arvestavate süsteemide tööd.

Loodav süsteem

Kuna eeldasime, et igal kaupmehel on olemas kodulehekülg ja mingil kujul
hinnakiri, siis tuleks esimese sammuna viia see hinnakiri RDF/ XML kujule.
Minimaalselt peaks seal iga toote kohta sisalduma omadused: nimetus, hind, URL
(aadress, kus on toote pikem kirjeldus).

Kui on täidetud eelpool kirjeldatud eeldused, saab iga kasutaja luua ise või
kasutada mõnda tarkvaraagenti, mis neid andmeid lugeda oskab.

Meie loome oma näites veebilehe, mis käitub tarkvaraagendina - pärib infot
erinevate kaupmeeste veebilehtedelt ja näitab seda vastavalt kasutaja
päringutele.

Agent pärib infot kaupmeeste käest RDF-kujul. Kasutaja saab veebiliidese kaudu
teha päringuid agendile. Agent teostab päringu vastavalt kasutaja poolt
sisestatud päringule. Agent saab kasutada päringu tegemisel kõiki eelnevalt
defineeritud kaupmeeste hinnakirju.

Ontoloogia kirjeldamine

Kuna valisime ontoloogia kirjeldamise keeleks RDF-i, siis tuleks ka tööriistade
valimisel lähtuda sellest, et need toetaksid RDF-i. Maailmas on sadu ontoloogia
loomise programme, kuid enamus neist on kommertsiaalsed ja suhteliselt
spetsiifilised. Väheste programmide kohta on olemas korralik näidetega
varustatud kasutajajuhend ja ühinenud kasutajaskond, kelle käest probleemide
korral abi küsida.

Protege

Ontoloogia kirjeldamiseks kasutame visuaalset tööriista nimega Protege. Seda
kasutatakse peamiselt uurimis- ja tööstusprojektides.

Protege abil on võimalik konstrueerida ontoloogiaid, luua kohandatud vorme
andmete sisestamiseks ning sisestada andmeid.

Samuti saab Protege abil luua ontoloogia, sisestada eksemplare ja kontrollida
ontoloogia õigsust. Väljundina on võimalik saada ühe võimalusena XML /RDF kujul
fail. Lisandprogrammina on võimalik lisada ka tõestaja ja päringumootor.
Tõestajana kasutasime programmi RACER.

Arutleja RACER

RACER (Renamed ABox and Concept Expression Reasoner) on teadmiste
taasesitamise süsteem, mis teostab optimeeritud tõestusi väljendusrikka
kirjeldusloogika jaoks. RACER pakub ka vahendeid algebraliseks arutluseks,
kaasarvatud konkreetsed meetmed,käsitlemaks:

• min/max piiranguid reaalarvude hulgal;

• lineaar-polünomiaalseid võrrandeid reaalaarvude hulgal või järjestussuhteid
põhiarvude hulgal;

• mittelineaarseid polünomiaalseid võrrandeid kompleksarvude hulgal;

• stringide võrduseid ja lahknevusi.

RACER toetab üldiste terminoloogiliste aksioomide kirjeldamist. TBox võib
sisaldada üldiste kontseptsioonide kaasarvamist. RACER suudab käsitleda
kontseptsioonide mitmeseid ja isegi tsüklilisi definitsioone.

Antud lahenduses kasutasime RACER-it Protege lisandprogrammina. Protege
suhtleb RACER-i serveriga kasutades HTTP protokolli ja sõnumid on kodeeritud
kasutades XML -i.

SiRPAC

Lihtsamat ontoloogiat on võimalik ka luua suvalise tekstiredaktoriga. SiRPAC on
RDF-i valideerimise teenus, mis baseerub RDF-i parseril Another RDF Parser
(ARP). Hetkel kasutatakse versiooni 2-alpha-1. ARF loodi Jeremy Carrolli poolt
Hewlett Packardi laborites.

Valideerimine tähendab antud kontekstis süntaksi kontrolli ja viidete kontrollimist.
Tulemusena on võimalik näha RDF-dokumendis kirjeldatud tripletid (subjekt,
predikaat, objekt) tabelina. Samuti on võimalik lasta genereerida etteantud
ontoloogia graafiline esitus, mis annab hea ülevaate. Sisendina on võimalik anda
ette URL, millelt süsteem saab RDF-dokumendi lugeda või kopeerida RDF-i sisu
veebilehel toodud sisendkasti.

RDF-i genereerimine kaupmehe poolt

Eelpool kirjeldatud ontoloogia kirjeldamise vahendid sobivad eelkõige
ontoloogiate väljatöötamiseks ja valideerimiseks. Igapäevaselt kaupmehe poolt
genereeritava RDF-kujul hinnakirja puhul on juba struktuur paigas ja hinnakirja
genereerimiseks on vaja programmijuppi, mis viib kaupmehe hinnakirja etteantud

ontoloogia nõuetele vastavasse formaati.

RDF-kujul hinnakirja genereerimiseks on kaks moodust:

• failina: kaupmehe server muudab failisüsteemis olevat RDF faili peale iga
muudatust hinnakirjas;

• teenusena: kaupmehe server genereerib iga pöördumise korral hinnakirja (faili
failisüsteemi tegelikult ei looda).

Kõige optimaalsem on genereerida peale iga muudatust hinnakirjas fail, sest
suure päringute arvu korral on selline lahendus vähem ressursinõudlik.
Mahukama hinnakirja puhul on faili lahendus kindlasti ka kiirem.

Päringute tegemine

RDQL

Päringute tegemiseks kasutame RDQL-i (Query Language for RDF). Selle abil saab
teha RDF dokumentidele SQL-i laadseid päringuid. Päringu käske on oluliselt
vähem kui SQL-i standard ette näeb, kuid enimkasutatavad SQL käsud on olemas
ka RDQL-is:

• SELECT - listing päritavatest muutujatest;

• FROM - nimekiri RDF-dokumentidest;

• WHERE - tingimused;

• AND - filtreerivad väljendid;

• USING - prefiksi deklaratsioon.

Näidispäring süsteemist

Allpool olevast näites näeme, kuidas reaalses süsteemis päringut esitatakse.
Päringus küsitakse hinnakiri riistvara kaupmehe käest, kelle hinnakiri asub
Beestingu koduleheküljel ja on kõigile vabalt kättesaadav.

Päringu vastuseks saadakse kõikide toodete andmed (nimetus, hind ja URI, millelt
on võimalik antud toote kohta saada lähemat infot), millel on hind.

Realisatsioon

Lahendus on programmeeritud PHP-s (PHP: Hypertext Preprocessor) ja
kasutajaliideseid HTML-i ja CSS-i kasutades. Kuna RDQL ei ole PHP-s
standardfunktsioonide hulgas, kasutasime PHP laiendust PHP XML Classes. Kuigi
lahendus kasutab serverina Linuxit, ei ole siin kasutatud platvormispetsiifilisi
komponente.

Lahenduse analüüs

Võrdleme loodud lahendust olemasolevate analoogidega ja analüüsime antud
kontseptsiooni rakendamise eri aspekte.

Hinnavaatlus.ee

Loodud lahendus on sarnane riistvara hindade võrdlemiseks loodud
veebiportaaliga hinnavaatlus.ee. Hinnavaatlus.ee on täiesti toimiv, sealt saab hea
ülevaate Eestis müüdavate arvutustehnika komponentide hindadest.

Iga süsteemiga liitunud firma uuendab oma hinnakirja faili teatud aja tagant ja
tagab selle kättesaadavuse veebi kaudu.

Firmadele on antud ette kindel formaat (xls - Microsoft Exceli arvutustabel) ja
väljad: toote nimetus, hind, saadavus (laos/tellitav) ja pikem kirjeldus toote kohta.
Hinnavaatluse otsingumootor uuendab süsteemis olevat infot teatud
ajaintervallide tagant, laadides kaupmeeste kodulehtedelt eelpool kirjeldatud
hinnakirja enda süsteemi.

Selline lahendus on lõppkasutaja seisukohast väga hea. Kuigi seal pole kõik
kaupmehed esindatud, annab portaal täiesti adekvaatse pildi, kuna on olemas
kõik olulisemad firmad.

Semantilise veebi seisukohast on aga selline andmete jagamine vale, kuna:

• faili formaat on platvormispetsiifiline;

• antud fail ei sisalda mingeid andmeid andmete kohta (metaandmeid);

• süsteem pole laiendatav (kui tekib juurde mingi uus väli);

• kui tekib Hinnavaatlus.ee kõrvale uus hinnavõrdlusportaal, siis peaksid kõik
kaupmehed looma mingis muus formaadis hinnakirja. See muudaks hinnakirjade
jagamise kaupmehe jaoks keeruliseks. Kaupmees peaks koostama mitu
paralleelset hinnakirja.

Loodud lahendus

Valminud lahendus on pigem tõestus, et valitud vahenditega on võimalik reaalselt
toimivat süsteemi luua, kui teostada võimalikult hea lahendus toodete hindade
jälgimiseks. Praktikas oleks sellisel kontseptsioonil kaks võimalikku rakendust:
veebiportaal ja riistvaraagent.

Riistvaraagent

Tegemist oleks programmiga, mis asuks kasutaja arvutis ja töötaks sarnaselt
programmiga Feedreader. Kuna käesolev versioon on teostatud
programmeerimiskeeles PHP siis ei ole see sobiv kasutaja arvutis käivitamiseks.
Seega tuleks teha programm näiteks keeles Java (et tagada sõltumatus
platvormist).

Veebiportaal

Riistvaraagendi baasil on võimalik arendada välja veebiportaal, kus inimesed
saavad ülevaate riistvara hindadest. Tehnilise poole pealt tuleks sel juhul teha
mõningaid muudatusi.

Kui algselt loetakse RDF-dokumente reaalajas, st kui kasutaja esitab päringu,
laetakse serverisse kõikide valitud kaupmeeste hinnakirjad, siis portaali korral
tuleks luua hinnakirjadest lokaalsed koopiad.

Kõige optimaalsem ja lihtsam oleks kasutada mõnda relatsioonilist
andmebaasimootorit nagu näiteks MySQL. Sel juhul laetakse hinnakirjad mingi
süsteemse protseduuri poolt veebiserverisse teatud ajaintervalli tagant.

Seejärel loetakse andmed andmebaasi. Kasutaja poolt tehtavad päringud
suunataks sel juhul samuti andmebaasi. Selline lihtsustus on aga mõttekas, vaid
juhul kui hinnakirjade struktuur on väga lihtne. Keerukamate struktuuride puhul ei
ole võimalik relatsioonilisi andmebaase kasutada, vaid tuleb teatud ajaintervalli
tagant laadida veebiserverisse ja teostada päringuid lokaalses serveris asuvatest
failidest. See vähendab võrguliiklust ja annab olulise ajalise võidu just suurte
andmemahtude korral.

Andmete vahetus kaupmehe ja agendi vahel

Suurte andmemahtude (kui hinnakirjas on palju tooteid) puhul võib probleemiks
saada andmete edastus. XML andmete puhul on väga palju ballasti - andmete ja
metaandmete suhe on tihtipeale metaandmete kasuks. Üheks võimaluseks on
jagada hinnakiri tükkideks. Näiteks tootegruppide või tootjate kaupa.

Teine optimeerimise võimalus oleks kasutada mingit muud protokolli kui HTTP.
Hetkel pole ühtegi sellist levinud protokolli kasutusel, kuid teoreetiliselt on
võimalik kasutada efektiivsemaid protokolle.

Antud juhul on meil mõlemal poolel olemas fail, mille erinevus on väike, nii
saaksime võrrelda vana ja uut faili, ning laadida alla vaid erinevused. Halvimal
juhul jääb andmete hulk samaks faili suurusega, kuid parimal juhul (kui
hinnakirjas pole muudatusi toimunud) pole vaja midagi alla laadida. Siinjuures on
oluline, et keskmise juhu maht jääb alla hinnakirja suuruse, sest on
ebatõenäoline, et muutub kogu hinnakiri.

Kolmas võimalus andmete liikumist hõlbustada, oleks kasutada andmete
pakkimist. Kaupmehepoolne server pakib alati hinnakirja faili kokku ja agendid
peavad siis sama faili lahti pakkima, et andmeid lugeda. Pakkimist kasutades
võidame transpordile kuluva aja pealt ligi kümme korda - just niipalju on võimalik
tekstifaili keskmiselt kokku pakkida.

Miks kasutada ontoloogiat?

Loodud mudel on semantilise veebi kontseptsiooni kohaselt loodud ja vastab
nõuetele. Andmete esitamiseks kasutatakse standarditele vastavaid
esitusmeetodeid (XML /RDF), mis muudab andmed (hinnakirjad) kõigile
arusaadavaks. Olenemata kasutatavast operatsioonisüsteemist ja
programmerimiskeelest on võimalik neid andmeid kasutada ja töödelda. Samuti
on selline süsteem avatud laiendustele, häirimata seejuures neid andmeid
kasutavate süsteemide tööd.

Sama probleemi oleks saanud ka lahendada, kasutades traditsioonilisi meetodeid.
Tõepoolest, sellisel juhul oleks kogu protsess palju lihtsam, kuid integratsioon
erinevate süsteemide vahel oleks palju keerukam. Väljapakutud lahenduse eelis
on just universaalsus, platvormist sõltumatus ja laiendatavus. Ontoloogiat
kasutades saab mistahes tarkvaraagent pöörduda kaupmeeste poole ja saada
sealt tagasi standarditele vastavat masinloetavat infot.

Semantilise veebi visioon ei ole küll veel täielikult realiseerunud, kuid paljud selle
„ehitusblokid” on juba olemas. Kokkuvõtvalt võiks öelda, et tulevik sõltub suuresti
sellest, kui palju avaldatakse infot, mis on kirjeldatud ontoloogia abil.

Olen kindel, et see teema muutub üha aktuaalsemaks ja inimesed hakkavad visalt
eesmärgi poole pürgima ehk siis semantiliste võrgurakenduste loomise suunas.

Lahendused

https://www.am.ee/lahendused

