Sissejuhatus semantilisse veebi, 4: Reaalne
susteemi loomine ontoloogiate abil

20 years ago- 22.04.2005 By AM

(Arvutimaailm 4/05)

Autor: Mario Peterson

Seekord raagin ontoloogiate kasutamisest ka reaalse stisteemi loomisel. Uhtlasi
on see viimane ja kokkuvotlik artikkel semnatilise veebi kohta.

Loodava susteemi kirjeldus
Probleemi pustitus
Vaatleme situatsiooni, mille kontekstis me stisteemi loome. Oletame, et:

* meil on palju riistvara muuvaid firmasid (Riistvara kaupmeeesl ..n);

igal kaupmehel on koduleht;

iga firma avaldab HTML-kujul oma toodete hinnad;

kdik kaupmehed mulvad samavaarseid kaupu, kuid erineva hinnaga;
* kaupmeeste arv (n) on suur.

Antud olukorras on vaga raske saada Ulevaadet muudavatest kaupadest. See
protsess on vaga aegandudev. Samuti ei ole voimalik luua sellise mudeli puhul
tarkvaralist agenti, mis hinnakirjad automaatselt |abi kaiks ja mingi kokkuvotte
teeks. Seega on paratamatu, et kaupmehed peavad oma hinnakirju avaldama ka
mingil muul kujul, kui HTML-is.

Defineerime nduded, millele loodav susteem peaks vastama.

* Platvormi séltumatus: pakutav lahendus ei tohiks s6ltuda kaupmehe ega agendi
poolt kasutatavast operatsioonisusteemist ega rakendustest.

* Universaalsus: kaupmehe poolt pakutav hinnakiri peab olema arusaadav
kdikidele agentidele.

https://www.am.ee/en/node/196
https://www.am.ee/en/node/196
https://www.am.ee/en/user/1
http://www.am.ee/node/125

* Laiendatavus: hinnakirja struktuur peab olema vabalt muudetav ilma, et
hairitaks vana struktuuriga arvestavate slusteemide t6od.

Loodav susteem

Kuna eeldasime, et igal kaupmehel on olemas kodulehekulg ja mingil kujul
hinnakiri, siis tuleks esimese sammuna viia see hinnakiri RDF/ XML kujule.
Minimaalselt peaks seal iga toote kohta sisalduma omadused: nimetus, hind, URL
(aadress, kus on toote pikem kirjeldus).

Kui on taidetud eelpool kirjeldatud eeldused, saab iga kasutaja luua ise voi
kasutada modnda tarkvaraagenti, mis neid andmeid lugeda oskab.

Meie loome oma naites veebilehe, mis kaitub tarkvaraagendina - parib infot
erinevate kaupmeeste veebilehtedelt ja naitab seda vastavalt kasutaja
paringutele.

Agent parib infot kaupmeeste kaest RDF-kujul. Kasutaja saab veebiliidese kaudu
teha paringuid agendile. Agent teostab paringu vastavalt kasutaja poolt
sisestatud paringule. Agent saab kasutada paringu tegemisel kdiki eelnevalt
defineeritud kaupmeeste hinnakirju.

Ontoloogia kirjeldamine

Kuna valisime ontoloogia kirjeldamise keeleks RDF-i, siis tuleks ka tooriistade
valimisel lahtuda sellest, et need toetaksid RDF-i. Maailmas on sadu ontoloogia
loomise programme, kuid enamus neist on kommertsiaalsed ja suhteliselt
spetsiifilised. Vaheste programmide kohta on olemas korralik naidetega
varustatud kasutajajuhend ja Uhinenud kasutajaskond, kelle kaest probleemide
korral abi kusida.

Protege

Ontoloogia kirjeldamiseks kasutame visuaalset tooriista nimega Protege. Seda
kasutatakse peamiselt uurimis- ja toostusprojektides.

Protege abil on vdimalik konstrueerida ontoloogiaid, luua kohandatud vorme
andmete sisestamiseks ning sisestada andmeid.

Samuti saab Protege abil luua ontoloogia, sisestada eksemplare ja kontrollida
ontoloogia digsust. Valjundina on vdimalik saada Uhe vdéimalusena XML /RDF kujul
fail. Lisandprogrammina on vdimalik lisada ka tdestaja ja paringumootor.
Toestajana kasutasime programmi RACER.

Arutleja RACER

RACER (Renamed ABox and Concept Expression Reasoner) on teadmiste
taasesitamise sisteem, mis teostab optimeeritud téestusi valjendusrikka
kirjeldusloogika jaoks. RACER pakub ka vahendeid algebraliseks arutluseks,
kaasarvatud konkreetsed meetmed, kasitlemaks:

* min/max piiranguid reaalarvude hulgal;

* lineaar-polinomiaalseid vorrandeid reaalaarvude hulgal vdi jarjestussuhteid
pohiarvude hulgal,

* mittelineaarseid polinomiaalseid vérrandeid kompleksarvude hulgal;
* stringide vorduseid ja lahknevusi.

RACER toetab uldiste terminoloogiliste aksioomide kirjeldamist. TBox voib
sisaldada uldiste kontseptsioonide kaasarvamist. RACER suudab kasitleda
kontseptsioonide mitmeseid ja isegi tsuklilisi definitsioone.

Antud lahenduses kasutasime RACER-it Protege lisandprogrammina. Protege
suhtleb RACER-i serveriga kasutades HTTP protokolli ja sdnumid on kodeeritud
kasutades XML -i.

SiRPAC

Lihtsamat ontoloogiat on vdéimalik ka luua suvalise tekstiredaktoriga. SiRPAC on
RDF-i valideerimise teenus, mis baseerub RDF-i parseril Another RDF Parser
(ARP). Hetkel kasutatakse versiooni 2-alpha-1. ARF loodi Jeremy Carrolli poolt
Hewlett Packardi laborites.

Valideerimine tahendab antud kontekstis sintaksi kontrolli ja viidete kontrollimist.
Tulemusena on vdimalik naha RDF-dokumendis kirjeldatud tripletid (subjekt,
predikaat, objekt) tabelina. Samuti on vdimalik lasta genereerida etteantud
ontoloogia graafiline esitus, mis annab hea Ulevaate. Sisendina on véimalik anda
ette URL, millelt sisteem saab RDF-dokumendi lugeda vdi kopeerida RDF-i sisu
veebilehel toodud sisendkasti.

RDF-i genereerimine kaupmehe poolt

Eelpool kirjeldatud ontoloogia kirjeldamise vahendid sobivad eelkdige
ontoloogiate valjatootamiseks ja valideerimiseks. lgapaevaselt kaupmehe poolt
genereeritava RDF-kujul hinnakirja puhul on juba struktuur paigas ja hinnakirja
genereerimiseks on vaja programmijuppi, mis viib kaupmehe hinnakirja etteantud

ontoloogia nduetele vastavasse formaati.
RDF-kujul hinnakirja genereerimiseks on kaks moodust:

* failina: kaupmehe server muudab failisisteemis olevat RDF faili peale iga
muudatust hinnakirjas;

» teenusena: kaupmehe server genereerib iga pdérdumise korral hinnakirja (faili
failisisteemi tegelikult ei looda).

Kdige optimaalsem on genereerida peale iga muudatust hinnakirjas fail, sest
suure paringute arvu korral on selline lahendus vahem ressursinéudlik.
Mahukama hinnakirja puhul on faili lahendus kindlasti ka kiirem.

Paringute tegemine
RDQL

Paringute tegemiseks kasutame RDQL-i (Query Language for RDF). Selle abil saab
teha RDF dokumentidele SQL-i laadseid paringuid. Paringu kaske on oluliselt
vahem kui SQL-i standard ette naeb, kuid enimkasutatavad SQL kasud on olemas
ka RDQL-is:

* SELECT - listing paritavatest muutujatest;
* FROM - nimekiri RDF-dokumentidest;

« WHERE - tingimused;

* AND - filtreerivad valjendid,;

* USING - prefiksi deklaratsioon.
Naidisparing susteemist

Allpool olevast naites naeme, kuidas reaalses slsteemis paringut esitatakse.
Paringus kusitakse hinnakiri riistvara kaupmehe kaest, kelle hinnakiri asub
Beestingu kodulehekdiljel ja on kdigile vabalt kattesaadav.

Paringu vastuseks saadakse kdikide toodete andmed (nimetus, hind ja URI, millelt
on voimalik antud toote kohta saada lahemat infot), millel on hind.

Realisatsioon

Lahendus on programmeeritud PHP-s (PHP: Hypertext Preprocessor) ja
kasutajaliideseid HTML-i ja CSS-i kasutades. Kuna RDQL ei ole PHP-s
standardfunktsioonide hulgas, kasutasime PHP laiendust PHP XML Classes. Kuigi
lahendus kasutab serverina Linuxit, ei ole siin kasutatud platvormispetsiifilisi
komponente.

Lahenduse analuus

Vordleme loodud lahendust olemasolevate analoogidega ja analilsime antud
kontseptsiooni rakendamise eri aspekte.

Hinnavaatlus.ee

Loodud lahendus on sarnane riistvara hindade vérdlemiseks loodud
veebiportaaliga hinnavaatlus.ee. Hinnavaatlus.ee on taiesti toimiv, sealt saab hea
Ulevaate Eestis muudavate arvutustehnika komponentide hindadest.

Iga susteemiga liitunud firma uuendab oma hinnakirja faili teatud aja tagant ja
tagab selle kattesaadavuse veebi kaudu.

Firmadele on antud ette kindel formaat (xIs - Microsoft Exceli arvutustabel) ja
valjad: toote nimetus, hind, saadavus (laos/tellitav) ja pikem kirjeldus toote kohta.
Hinnavaatluse otsingumootor uuendab slsteemis olevat infot teatud
ajaintervallide tagant, laadides kaupmeeste kodulehtedelt eelpool kirjeldatud
hinnakirja enda slUsteemi.

Selline lahendus on I6ppkasutaja seisukohast vaga hea. Kuigi seal pole kdik
kaupmehed esindatud, annab portaal taiesti adekvaatse pildi, kuna on olemas
kdik olulisemad firmad.

Semantilise veebi seisukohast on aga selline andmete jagamine vale, kuna:
« faili formaat on platvormispetsiifiline;

* antud fail ei sisalda mingeid andmeid andmete kohta (metaandmeid);

* sUsteem pole laiendatav (kui tekib juurde mingi uus vali);

* kui tekib Hinnavaatlus.ee kdrvale uus hinnavdrdlusportaal, siis peaksid kdik
kaupmehed looma mingis muus formaadis hinnakirja. See muudaks hinnakirjade
jagamise kaupmehe jaoks keeruliseks. Kaupmees peaks koostama mitu
paralleelset hinnakirja.

Loodud lahendus

Valminud lahendus on pigem tdestus, et valitud vahenditega on vdimalik reaalselt
toimivat susteemi luua, kui teostada voéimalikult hea lahendus toodete hindade
jalgimiseks. Praktikas oleks sellisel kontseptsioonil kaks voimalikku rakendust:
veebiportaal ja riistvaraagent.

Riistvaraagent

Tegemist oleks programmiga, mis asuks kasutaja arvutis ja tootaks sarnaselt
programmiga Feedreader. Kuna kaesolev versioon on teostatud
programmeerimiskeeles PHP siis ei ole see sobiv kasutaja arvutis kaivitamiseks.
Seega tuleks teha programm naiteks keeles Java (et tagada sdltumatus
platvormist).

Veebiportaal

Riistvaraagendi baasil on vdimalik arendada valja veebiportaal, kus inimesed
saavad ulevaate riistvara hindadest. Tehnilise poole pealt tuleks sel juhul teha
moningaid muudatusi.

Kui algselt loetakse RDF-dokumente reaalajas, st kui kasutaja esitab paringu,
laetakse serverisse kodikide valitud kaupmeeste hinnakirjad, siis portaali korral
tuleks luua hinnakirjadest lokaalsed koopiad.

Kdige optimaalsem ja lihtsam oleks kasutada moénda relatsioonilist
andmebaasimootorit nagu naiteks MySQL. Sel juhul laetakse hinnakirjad mingi
susteemse protseduuri poolt veebiserverisse teatud ajaintervalli tagant.

Seejarel loetakse andmed andmebaasi. Kasutaja poolt tehtavad paringud
suunataks sel juhul samuti andmebaasi. Selline lihtsustus on aga mottekas, vaid
juhul kui hinnakirjade struktuur on vaga lihtne. Keerukamate struktuuride puhul ei
ole vdimalik relatsioonilisi andmebaase kasutada, vaid tuleb teatud ajaintervalli
tagant laadida veebiserverisse ja teostada paringuid lokaalses serveris asuvatest
failidest. See vahendab vdrguliiklust ja annab olulise ajalise vdidu just suurte
andmemahtude korral.

Andmete vahetus kaupmehe ja agendi vahel

Suurte andmemahtude (kui hinnakirjas on palju tooteid) puhul vdib probleemiks
saada andmete edastus. XML andmete puhul on vaga palju ballasti - andmete ja
metaandmete suhe on tihtipeale metaandmete kasuks. Uheks véimaluseks on
jagada hinnakiri tikkideks. Naiteks tootegruppide voi tootjate kaupa.

Teine optimeerimise véimalus oleks kasutada mingit muud protokolli kui HTTP.
Hetkel pole Uhtegi sellist levinud protokolli kasutusel, kuid teoreetiliselt on
vOimalik kasutada efektiivsemaid protokolle.

Antud juhul on meil mélemal poolel olemas fail, mille erinevus on vaike, nii
saaksime vorrelda vana ja uut faili, ning laadida alla vaid erinevused. Halvimal
juhul jaab andmete hulk samaks faili suurusega, kuid parimal juhul (kui
hinnakirjas pole muudatusi toimunud) pole vaja midagi alla laadida. Siinjuures on
oluline, et keskmise juhu maht jaab alla hinnakirja suuruse, sest on
ebatdendoline, et muutub kogu hinnakiri.

Kolmas vdimalus andmete liikumist hélbustada, oleks kasutada andmete
pakkimist. Kaupmehepoolne server pakib alati hinnakirja faili kokku ja agendid
peavad siis sama faili lahti pakkima, et andmeid lugeda. Pakkimist kasutades
vOidame transpordile kuluva aja pealt ligi kimme korda - just niipalju on vdimalik
tekstifaili keskmiselt kokku pakkida.

Miks kasutada ontoloogiat?

Loodud mudel on semantilise veebi kontseptsiooni kohaselt loodud ja vastab
nduetele. Andmete esitamiseks kasutatakse standarditele vastavaid
esitusmeetodeid (XML /RDF), mis muudab andmed (hinnakirjad) kdigile
arusaadavaks. Olenemata kasutatavast operatsioonistusteemist ja
programmerimiskeelest on voimalik neid andmeid kasutada ja td6delda. Samuti
on selline stisteem avatud laiendustele, hairimata seejuures neid andmeid
kasutavate slsteemide t66d.

Sama probleemi oleks saanud ka lahendada, kasutades traditsioonilisi meetodeid.
Toepoolest, sellisel juhul oleks kogu protsess palju lihtsam, kuid integratsioon
erinevate susteemide vahel oleks palju keerukam. Valjapakutud lahenduse eelis
on just universaalsus, platvormist sdltumatus ja laiendatavus. Ontoloogiat
kasutades saab mistahes tarkvaraagent poorduda kaupmeeste poole ja saada
sealt tagasi standarditele vastavat masinloetavat infot.

Semantilise veebi visioon ei ole kull veel taielikult realiseerunud, kuid paljud selle
~€hitusblokid” on juba olemas. Kokkuvotvalt voiks delda, et tulevik soltub suuresti
sellest, kui palju avaldatakse infot, mis on kirjeldatud ontoloogia abil.

Olen kindel, et see teema muutub uha aktuaalsemaks ja inimesed hakkavad visalt
eesmargi poole purgima ehk siis semantiliste vérgurakenduste loomise suunas.

e Lahendused

https://www.am.ee/lahendused

